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LETTER TO THE EDITOR 

Series analysis for the three-state Potts model 

I G Enting 
Physics Department, Northeastern University, Boston, Massachusetts 021 15, USA 

Received 18 February 1980 

Abstract. Low-temperature series expansions for the zero-field partition function and 
order parameter of the three-state Potts model have been extended to u3* .  Estimates for a' 
and p show rather poor convergence but are consistent with the values a' = 4, p = $ which 
characterise the 'hard hexagons' lattice gas. 

The problem of determining the critical exponents of the three-state Potts model in two 
dimensions has proved particularly difficult. Both series analysis and renormalisation 
group techniques have been used, producing a number of conflicting estimates. 

The question of the exponents is of current interest for two reasons: 
(i) den Nijs (1979) has conjectured that a = a' = 3. This conjecture is a special case 

of a relation that serves to unify critical and tricritical points (Nienhuis et a1 
1979) and so it is particularly interesting. 

(ii) Baxter (1980) has obtained an exact solution for the 'hard hexagons' problem 
and finds that a =$, p =g. The hard hexagons system is a lattice gas on the 
triangular lattice with nearest-neighbour exclusion. Alexander (1 975) sugges- 
ted that this type of system should have the same exponents as the three-state 
Potts model. 

In order to test these ideas, low-temperature series for the reduced partition 
function 2 and the order parameter M have been extended to order u31 (for zero field) 
using the finite-lattice method (de Neef and Enting 1977) in the manner described by 
Enting (1978). 

1 

The series are of the form: 

m 

Z = 1 +  1 a , u " = l + 2 u 4 + 4 u 6 +  . . .  
n =4 

m 
4 6 M = l -  b , u " = l - 3 ~  - 1 2 ~  - . . . .  

n = 4  

The coefficients a,, b,, n c 3 1 are given in table 1. 
The analysis of these series shows that the convergence of the exponent estimates is 

rather poor. This may well be due to significant correction terms which modify the 
assumed power-law behaviour. 

Among the many exponent estimates, those of Zwansig and Ramshaw (1977) giving 
a'= 0.296+0*002 and Miyashita et af  (1979) giving p = 0~1064*0~0005 are of 
particular significance because of the high precision that was claimed. 
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Table 1. Coefficients in the expansion of 2 and M 
m m 

~~ 

4 2 3 
5 0 0 
6 4 12 
7 4 12 
8 6 36 
9 24 108 

10 24 210 
11 68 480 
12 190 1746 
13 192 2340 
14 904 10 566 
15 1420 19 500 
16 3160 53 976 
17 9940 152 604 
18 14 572 329 424 
19 49 268 971 304 
20 102 886 2403 291 
21 225 004 5955 576 
22 652 940 16 858 584 
23 1301 256 40 337 376 
24 3513 806 110 301 321 
25 8591 792 287 061 696 
26 19 326 248 730 223 208 
27 52 781 148 1985 703 720 
28 120 709 472 5070 001 716 
29 306 339 824 13 446 444 720 
30 779682608 35650214232 
31 1852 672 272 92 442 918 828 

Zwansig and Ramshaw based their analysis on a Neville table extrapolation in which 
the second-order extrapolants were steadily increasing while the third-order 
extrapolants were steadily decreasing. In actual fact, the trend in the second-order 
extrapolants is reversed by the u t 7  term and for n >20, all the first- to fifth-order 
extrapolants (estimates of 2 - cy'/2) show a steady decline. 

By order 31 the estimate of cy has increased to about 0031 but the slow convergence 
suggests that the Neville tables are not the best way to extrapolate the series. The value 
cy = cy' = 4 is quite consistent with the trends observed for n > 20. 

In an attempt to obtain cy' by an alternative means, series for the energy were 
analysed, exploiting the fact that the critical energy is known exactly (Kihara et a1 
1954). 

The function analysed was E, where 

E, = U, - U = (1 -d$) - u(d/du) In 2. 

The expected behaviour is E , - ( ~ , - u ) ~ - "  so Pad6 approximants to (U,- 
u)(d/du) In E, should give estimates of cy'- 1. These estimates are given in table 2 and 
they show a steady trend towards smaller values of cy' as the number of series terms 
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Table 2. Exponent estimates for 1 --a and p obtained by evaluating Pad6 approximants to 
(U, - u)(d/du) In (U, - U )  and (U, - u)(d/du) In M at U = U,. 

[N,  MI Estimates of 1 --a Estimates of p 

8, 7 
7, 8 
8, 8 
9, 8 
8, 9 
9, 9 

10, 9 
9,lO 

10,lO 
11,lO 
10,11 
11,11 
12,11 
11,12 
12,12 
13,12 
12,13 
13,13 
14,13 
13,14 
14,14 
15,14 
14,15 
15,15 

0.6032 
0.6036 
0.6068 
0.6344 
1.0883 
0.6176 
0.6160 
0.6161 
0.6162 
0.6153 
0,6160 
0.6159 
0.6156 
0.6160 
0.6180 
0.6289 
0.5462 
0.6229 
0,6252 
0.6267 
0.6279 
0.6251 
0.6267 
- 

- 
- 
0.107 09 
0,106 75 
0.107 05 
0.105 64 
0.107 86 
0.109 55 
0.108 42 
0.108 61 
0.108 55 
0.108 65 
0.108 60 
0.108 36 
0.112 75 
0.109 13 
0.108 96 
0.109 16 
0.109 12 
0.109 30 
0.109 27 
0.110 06 
05109 30 
0.106 85 

increases. Again this trend is consistent with a'=$ but the rate of convergence is 
disappointingly slow. 

The order parameter series was analysed by constructing Pad6 approximants to 
(U, - u)(d/du) In M and evaluating them at U = U, = (&- 1)/2 to give estimates of p. 
These estimates are listed in table 2. The estimates using short series are in agreement 
with the v'alue 0.1064 obtained by Miyashita et a1 but as more series terms are included 
the estimates increase steadily to about 0,109. Again the trend is consistent with the 
hard hexagons exponent. 

Watts (1974) pointed out the possibility of extrapolating exponent estimates from 
[M, NI Pad6 approximants by plotting them against (M+N)- ' .  When the a', p 
estimates from table 2 are plotted in this way the results are consistent with linear trends 
towards f and $ respectively, but the scatter in the a' estimates (and to a lesser extent in 
the p estimates) is too large to allow for useful extrapolations. 

The surprising aspect of the 'hard hexagons' exponents is that scaling gives S = 14. If 
the value S = 14 did apply to Potts models it would indicate that the errors in series 
estimates for S had been underestimated in the same way that errors in a, p were 
underestimated. If 6 did vary with q, the number of states in the Potts model, then the 
q = 1 case (bond percolation) which as S = 18 (Gaunt and Sykes 1976) would no longer 
appear as an anomaly. 

A more extensive analysis of these series is currently in progress. Unfortunately the 
finite lattice method is not a particularly efficient technique for obtaining high-field 
expansions and so a direct test of the 6 = 14 conjecture may not be possible. 
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